Spatially separated excitons in 2D and 1D

David Abergel

March 10th, 2015

3/10/15

1 / 24

D.S.L. Abergel

Introduction

2 Spatially separated excitons in 2D - The role of disorder

3 Spatially separated excitons in 1D

2 / 24

D.S.L. Abergel 3/10/15

Introduction

3/10/15

3 / 24

D.S.L. Abergel

Key ingredients:

- Independent contacts to each layer
- High degree of nesting of Fermi surfaces
- Low SP tunneling rate between layers

Picture credit: Kharitonov *et al.*, Phys. Rev. B **78**Phase coherence between the two layers

Transport of excitons can be measured:

Bilayer PseudoSpin Field-Effect Transistor
(BiSFET): A Proposed New Logic Device

Saniav K. Baneries, Fillow, IEEE, Leonard F. Register, Senior Member, IEEE.

Emanuel Tutuc. Member IEEE, Dharmendar Reddy, and Allan H. MacDonald

Picture credit: Su et al., Nat. Phys. 4.

Apply current in lower layer, measure voltage drop in upper layer (drag measurement).

D.S.L. Abergel 3/10/15 4 / 24

A new mechanism for superconductivity: pairing between spatially separated electrons and holes

Yu. E. Lozovik and V. I. Yudson

Spectroscopy Institute, USSR Academy of Sciences (Submitted March 2, 1976)
Zh. Eksp. Teor. Fiz. 71, 738-753 (August 1976)

A new mechanism for superconductivity, based on the pairing of spatially separated electrons and holes that arises from their Coulomb attraction, is proposed. A gap in the single-particle excitation spectrum is found. The roles of interband transitions, the electron-phonon interaction, scattering by impurities, spin-orbit interaction, etc. are analyzed. The critical current is calculated. Possible experiments are discussed.

PACS numbers: 74 30 -e

The maximum value of the gap Δ , equal in order of magnitude to the binding energy $E_0 = m^* e^4 / \epsilon^2$ of an isolated pair, is attained when $m_e \sim m_h \sim m^*$ and $D \lesssim a^* \sim l$ (the strong-interaction regime, in which (8) has only the character of an estimate; $a^* = \epsilon / m^* e^2$). If, e.g., $m^* = 0.03 m_0 \ (m_0 \text{ is the electron mass)}$ and $\epsilon = 3$, then $a^* \approx 50 \ \mathring{A}$ and for $D \sim l - 50 \ \mathring{A}$ we have $\Delta \sim 300 \ \text{K}$.

Prediction was formation of 'superconductivity' with gap of the order of room temperature.

D.S.L. Abergel 3/10/15 5 / 24

The impact of disorder in 2D

with Enrico Rossi, Rajdeep Sensarma, and Martin Rodriguez-Vega, and Sankar Das Sarma.

D.S.L. Abergel 3/10/15 6 / 24

- The condensate has yet to be observed despite several experimental attempts.
- Question is: Why?

D.S.L. Abergel

- The condensate has yet to be observed despite several experimental attempts.
- Question is: Why?

Possibility 1: Excitonic gap is too small.

The form of the inter-layer screening used in the calculation of the gap is crucial:

Sodemann et al., Phys. Rev. B 85, 195136 (2012).

For SiO₂ or BN substrates, $\alpha = \frac{e^2}{\kappa \hbar v_E} \approx 0.5$. For vacuum (suspended graphene), $\alpha = 2.2$.

- Unscreened interaction ⇒ room temperature condensate!!!
- Static screening ⇒ vanishing gap.
- Dynamic screening ⇒ ???

◆□ > ◆圖 > ◆臺 > ◆臺 >

7 / 24

- The condensate has yet to be observed despite several experimental attempts.
- Question is: Why?

Possibility 1: Excitonic gap is too small.

The form of the inter-layer screening used in the calculation of the gap is crucial:

Sodemann et al., Phys. Rev. B 85, 195136 (2012).

For SiO $_2$ or BN substrates, $\alpha=\frac{e^2}{\kappa\hbar v_F}\approx 0.5$. For vacuum (suspended graphene), $\alpha=2.2$.

- Unscreened interaction ⇒ room temperature condensate!!!
- Static screening ⇒ vanishing gap.
- Dynamic screening ⇒ ???

Possibility 2: Disorder

D.S.L. Abergel 3/10/15 7 / 24

- STM can reveal atomic-scale structure of crystal.
- Also resolve the Dirac point,
- Which can be used to extract the local charge density.

Rutter et al., Nat. Phys. 7, 649 (2009).

Monolayer:

Deshpande *et al.*, Phys. Rev. B **79**, 205411 (2009). Scale bar is 8nm.

Bilayer: b -0.5 Height (nm) 0.5 c 0.50 dl/dl/ (ns) 0.8 30 nm 70 nm 70 nm 86 PS 10 PR 1

Rutter et al., Nat. Phys. 7, 649 (2011). Scale bar is 20nm.

D.S.L. Abergel 3/10/15 8 / 24

Scalar potential acts as a local shift in the chemical potential:

Charged impurities:

Zhang et al., Nat. Phys. 5, 722 (2009).

Ripples, corrugations, and strain:

Gibertini et al. Phys. Rev. B 85, 201405(R) (2012).

◆□ > →□ > → □ > → □ >

• Main question: Does charge inhomogeneity affect the formation of the condensate?

D.S.L. Abergel 3/10/15 10 / 24

• Main question: Does charge inhomogeneity affect the formation of the condensate?

 This is similar to magnetic disorder in superconductivity.

D.S.L. Abergel 3/10/15 10 / 24

There are three stages to the calculation:

- Theory for homogeneous unbalanced system.
 - Temporarily ignore inhomogeneity, calculate effect of imperfectly nested Fermi surfaces.
- 2 Analysis of realistic inhomogeneity.
 - ${\bf \triangleright}$ Calculate statistics for $\delta\mu({\bf r})$ in situations corresponding to contemporary experiments.
- Combine these two results to assess impact of inhomogeneity on condensate formation.

D.S.L. Abergel 3/10/15 11 / 24

igspace NORDITA Step 1: T_c in clean system – unscreened interaction

Unscreened interaction:

$$V(q) = \frac{2\pi e^2}{\epsilon q}$$

- ullet $\Delta(\delta\mu)$ unchanged for $\delta\mu < 2\Delta(0)$.
- Equivalent to Clogston-Chandrasekhar limit.
- No evidence of FFLO state.

D.S.L. Abergel 3/10/15 12 / 24

<ロト <回り < 重り < 重

igspace NORDITA Step 1: T_c in clean system – unscreened interaction

Unscreened interaction:

$$V(q) = \frac{2\pi e^2}{\epsilon q}$$

- ullet $\Delta(\delta\mu)$ unchanged for $\delta\mu < 2\Delta(0)$.
- Equivalent to Clogston-Chandrasekhar limit.
- No evidence of FFLO state.

<ロト <回り < 重り < 重

D.S.L. Abergel 3/10/15 12 / 24

igspace NORDITA Step 1: T_c in clean system – unscreened interaction

Unscreened interaction:

$$V(q) = \frac{2\pi e^2}{\epsilon q}$$

- ullet $\Delta(\delta\mu)$ unchanged for $\delta\mu < 2\Delta(0)$.
- Equivalent to Clogston-Chandrasekhar limit.
- No evidence of FFLO state.

<ロト <回り < 重り < 重

D.S.L. Abergel 3/10/15 12 / 24

- Broken translational symmetry makes it impossible to analytically calculate exact density distribution for random disorder.
- We employ a numerical method: Thomas-Fermi theory.
- Functional method (à la DFT).
- The kinetic energy operator is also replaced by a functional of the density.
- This restricts the applicability to the regime where $|\nabla n/n| < k_F$, which is satisfied for double layer graphene.

D.S.L. Abergel 3/10/15 13 / 24 Energy functional is

$$E[n_u, n_l] = E_u[n_u(\mathbf{r})] + E_l[n_l(\mathbf{r})] + \frac{e^2}{2\kappa} \iint d^2\mathbf{r} d^2\mathbf{r}' \frac{n_u(\mathbf{r})n_l(\mathbf{r}')}{\sqrt{|\mathbf{r} - \mathbf{r}'|^2 + d^2}}$$

 Layer energy functional includes contributions from disorder potential, and electron–electron interactions:

$$E[n] = E_K[n(\mathbf{r})] + \frac{e^2}{2\kappa} \int d\mathbf{r}' \int d\mathbf{r} \frac{n(\mathbf{r})n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} + \frac{e^2}{\kappa} \int d\mathbf{r} V_D(\mathbf{r})n(\mathbf{r}) - \mu \int d\mathbf{r} n(\mathbf{r}).$$

- Ground state density landscape is found by numerically minimizing the energy functional with respect to the density distribution.
- Density distribution gives local chemical potential for each layer, and hence the local $\delta\mu$.

D.S.L. Abergel 3/10/15 14 / 24

• Using TFT, we calculate the spatial profile of $\delta\mu$ for a given manifestation of charged impurity disorder:

4日 > 4回 > 4 至 > 4 至 >

- We can perform this calculation for many (≈ 600) disorder realizations and collect statistics for the distribution of $\delta\mu$.
- This distribution characterized by it's root-mean-square (rms) value.

Predictions for Δ from BCS theory:

- Unscreened: $\Delta \sim 30 \text{meV}$,
- Static screening: $\Delta \sim 0.01 \text{meV}$,
- Dynamic screening: $\Delta \sim 1 \text{meV}$.

D.S.L. Abergel 3/10/15 16 / 24

- Excitonic superfluidity is severely impacted by charge inhomogeneity in the two layers.
- The very cleanest contemporary samples may be on the cusp of allowing the condensate.
 - If estimates of the gap size using dynamical screening are to be believed.

D.S.L. Abergel 3/10/15 17 / 24

Generalization to 1D

D.S.L. Abergel 3/10/15 18 / 24

B. Ganjipour et al., Appl. Phys. Lett. 101, 103501 (2012).

D.S.L. Abergel

B. Ganjipour et al., Appl. Phys. Lett. 101, 103501 (2012).

- Case 2 allows for pairing.
- Ground state populations.
- Alternate geometries also possible.

19 / 24

D.S.L. Abergel 3/10/15

NORDITA Assumptions and disclaimers

- No true long-range order in 1D.
- Particle correlations have power law decay ⇒ quasi-order.

20 / 24

- No true long-range order in 1D.
- Particle correlations have power law decay ⇒ quasi-order.
- In low density regime ($k_F d < 1$), system is effectively fermionic.
- Transport experiments on core-shell wires show no Luttinger liquid behavior. B. Ganjipour et al., Appl. Phys. Lett. 101, 103501 (2012).
- Bosonization treatment by Werman and Berg:

(a) Tunneling dominant regime

(b) Backscattering dominant regime

Y. Werman and E. Berg, arXiv:1408.2718 (2014).

D.S.L. Abergel 3/10/15 20 / 24

NORDITA Theoretical details

Mean-field BCS theory in the particle-hole channel:

$$H = \sum_k \left[\xi_{1k} a_k^\dagger a_k + \xi_{2k} b_{-k} b_{-k}^\dagger + \Delta_k a_k^\dagger b_{-k}^\dagger + \mathrm{h.c.} \right].$$

• The gap function is:

$$\Delta_k = \int dk' \frac{V_{\rm e-h}(k'-k)}{4\pi} \frac{\Delta_{k'} \left[n_{\alpha}(k') + n_{\beta}(k') - 1 \right]}{\sqrt{(\xi_{1k} - \xi_{2k})^2 + 4\Delta_{k'}^2}}.$$

Quasi-particle bands are:

$$E_{\pm k} = \frac{\xi_{1k} + \xi_{2k}}{2} \pm \frac{1}{2} \sqrt{(\xi_{1k} - \xi_{2k})^2 + 4\Delta_k^2}.$$

- Solve self-consistently for the gap function.
- Distance of closest approach of the two bands characterises 'condensate', label as $\Delta_{\rm max}$.

21 / 24

D.S.L. Abergel 3/10/15

- Case 2 allows for pairing.
- Optimal pairing when μ at band crossing (μ_c) .

D.S.L. Abergel

- Case 2 allows for pairing.
- Optimal pairing when μ at band crossing (μ_c) .

$$\mu_{\text{crit}} = \mu_c \pm 2\Delta_{\text{max}} \frac{\sqrt{|m_1^*||m_2^*|}}{|m_1^* - m_2^*|}$$

D.S.L. Abergel 3/10/15 22 / 24

- Case 2 allows for pairing.
- \bullet Optimal pairing when μ at band crossing (μ_c) .

$$\mu_{\rm crit} = \mu_c \pm 2 \Delta_{\rm max} \frac{\sqrt{|m_1^*||m_2^*|}}{|m_1^* - m_2^*|}$$

0.5

◆□ > ◆圖 > ◆臺 > ◆臺 > D.S.L. Abergel 3/10/15 22 / 24

- Case 2 allows for pairing.
- Optimal pairing when μ at band crossing (μ_c) .

$$\mu_{\rm crit} = \mu_c \pm 2 \Delta_{\rm max} \frac{\sqrt{|m_1^*||m_2^*|}}{|m_1^* - m_2^*|}$$

<ロト <回り < 重り < 重

- Spatially separated excitonic systems are an exciting avenue for device design.
- Double layer graphene systems may be on the cusp of realizing the condensate.

```
Phys. Rev. B 86, 155447(R) (2012),
Phys. Rev. B 88, 235402 (2013).
```

Collaboration with E. Rossi, S. Das Sarma, M. Rodriguez-Vega, and R. Sensarma.

Parallel 1D systems may also be attractive hosts for exciton formation.
 arXiv:1408.7065

4□ > 4回 > 4 回 > 4 回 > 1 回 9 9 0 0

- 'Lateral heterostructures' of 2D materials.
- Optical properties of 2D materials.
- Tunneling conductance in strongly correlated systems.

